
MATH2050C Assignment 12

Section 5.6 no. 3, 4, 11.

Deadline: April 15 , 2025.

Hand in: 5.6 no. 3, 4, 11.

Supplementary Problems

1. (Optional) Order the rational numbers in (0, 1) into a sequence {xk}. Define a function
on (0, 1) by φ(x) =

∑
1/2k where the summation is over all indices k such that xk < x.

Show that

(a) φ is strictly increasing and limx→1− φ(x) = 1.

(b) φ is discontinuous at each xk.

(c) φ is continuous at each irrational number in (0, 1).

See next page
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The Exponential Function

We study the exponential function, and its inverse function namely the logarithmic function.
Then we use it to define the power functions.

Define
E(x) = lim

n→∞

(
1 +

x

n

)n
.

Previously we have established the following facts:

� The limit E(x) ≡ limn→∞(1 + x/n)n exists for all x ∈ R.

� For x ≥ 0, the sequence {(1 + x/n)n} is increasing.

� For x ∈ R, E(x)E(−x) = 1.

� For x ≥ 0, E(x) =
∑∞

k=0 x
k/k!.

Now we establish more.

Theorem 12.1 For x ∈ R,

E(x) =
∞∑
k=0

xk

k!
.

Proof Let x ∈ [−a, a], we first claim there are k0 and M depending only on a so that

|x|k

k!
≤ M

2k
, k ≥ k0 + 1. (1)

For, fixing k0 so that a/(k0 + 1) ≤ 1/2, we have

|x|k

k!
≤ ak

k!

=
a

1

a

2
· · · a

k0

a

k0 + 1
· · · a

k

<
a

1

a

2
· · · a

k0

1

2k−k0

=
M

2k
, M =

(2a)k0

k0!
.

For k ≥ k0 + 1 and large n, we have∣∣∣(1 + x

n

)n
−

k∑
j=0

Cn
j

xj

nj

∣∣∣ =
∣∣∣ n∑
j=k+1

Cn
j

xj

nj

∣∣∣
≤

n∑
j=k+1

|x|j

j!

≤
n∑

j=k+1

M

2j

≤ M

2k+1

∞∑
j=0

1

2j

=
M

2k
,
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after using (1). Noting that

Cn
j

xj

nj
=

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− j − 1

n

)xj
j!
.

Letting n → ∞, we have ∣∣∣E(x)−
k∑

j=0

xj

j!

∣∣∣ ≤ M

2k
.

Given ε > 0, choose K such that M/2K < ε. For k ≥ K, |E(x) −
∑k

j=0 x
j/j!| ≤ M/2k ≤

M/2K < ε. The conclusion follows.

Theorem 12.2 For x, y ∈ R, E(x+ y) = E(x)E(y) .

Proof Assume x, y > 0 first. (If one of x, y is zero, the identity holds obviously.)(
1 +

x

n

)(
1 +

y

n

)
=

(
1 +

x+ y

n
+

xy

n2

)

=

(
1 +

x+ y

n
+

xy

n2

)
(
1 +

x+ y

n

) ×
(
1 +

x+ y

n

)
.

Using 1 ≤ 1+a+b
1+a ≤ 1 + b for a, b ≥ 0, we have

1 ≤


(
1 +

x+ y

n
+

xy

n2

)
(
1 +

x+ y

n

)

n

≤
[(

1 +
xy

n2

)]n
≤ E(xy)1/n .

In the last step we have used the fact that (1+xy/n)n increases to E(xy), hence (1+xy/n)n ≤
E(xy) and (1 + xy/n2)n ≤ E(xy)1/n. Using a1/n → 1 as n → ∞ for any a > 0, we conclude by
the Squeeze Theorem that

lim
n→∞


(
1 +

x+ y

n
+

xy

n2

)
(
1 +

x+ y

n

)

n

= 1 .

Therefore, by passing limit in

(
1 +

x

n

)n (
1 +

y

n

)n
=


(
1 +

x+ y

n
+

xy

n2

)
(
1 +

x+ y

n

)

n

×
(
1 +

x+ y

n

)n

,

we conclude E(x)E(y) = E(x + y) for x, y ≥ 0. The remaining cases are (a) x > 0, y < 0 and
x+ y > 0, (b) x > 0, y < 0, x+ y < 0, and (b) x, y < 0. For (a), E(−y)E(x+ y) = E(x) holds.
Using E(−y)E(y) = 1, E−1(y)E(x + y) = E(x) which is E(x + y) = E(x)E(y). Cases (b) and
(c) can be deduced in a similar way.

Theorem 12.3 E(x) is strictly increasing and limn→∞E(x) = ∞ and limn→−∞E(x) = 0.
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Proof For x > 0, from Theorem 12.1, E(x) > 1+x > 1. For y > x > 0, E(y) = E(x+y−x) =
E(x)E(y − x) > E(x) since E(y − x) > 1. Hence E is strictly increasing on [0,∞). Using
the relation E(x) = 1/E(−x), E is also strictly increasing on (−∞, 0). We conclude that E is
strictly increasing on R. Finally, from E(x) ≥ 1 + x, we see that E(x) diverges as x → ∞. On
the other hand, using E(x) = (E(−x))−1, E(x) decays to 0 as x → −∞.

Theorem 12.4 E(x) is continuous everywhere.

Proof First we claim that E is continuous at x = 0. For x ∈ [−1, 1],

|E(x)− 1| =
∣∣∣x(1 + x

2!
+

x2

3!
+

x3

4!
+ · · ·

) ∣∣∣ ≤ E(1)|x|.

Therefore, limx→0E(x) = 1 = E(0). Hence E is continuous at x = 0. At an arbitrary c,
E(c+ h)− E(c) = E(c)(E(h)− 1) → 0 as h → 0, so E is continuous at c.

Here we present a more general result which shows not only the exponential functions, but also
the sine and cosine functions are continuous everywhere.

Theorem 12.5 Consider the infinite series

s(x) =
∞∑
k=0

ak
xk

k!
,

where ak ∈ {−1, 0, 1} for all k. Then s is continuous on (−∞,∞). In particular, E(x) is
continuous everywhere.

Proof First we establish convergence. For x ∈ [−a, a], we use the estimate (1) in the proof
of Theorem 12.1: |x|k/k! ≤ M/2k for k ≥ k0 + 1. Therefore, for the partial sums sn and
sm,m,n ≥ k0 + 1,m ≥ n, ∣∣∣sm(x)− sn(x)

∣∣∣ =
m∑

k=n+1

|x|k

k!

≤ M

m∑
k=n1

1

2k

≤ M

2n+1

∞∑
k=0

2−k

=
M

2n
,

which shows that sn(x) is a Cauchy sequence, hence s(x) converges.

To show that s is continuous, we let m → ∞ in the estimate above to get∣∣∣s(x)− sn(x)
∣∣∣ ≤ M

2n
.

Let c ∈ (−a, a). Given ε > 0, fix n such that M/2n < ε/3. Then

|s(x)− s(c)| ≤ |s(x)− sn(x)|+ |sn(x)− sn(c)|+ |sn(c)− s(c)| ≤ ε/3 + |sn(x)− sn(c)|+ ε/3 .

We fix n and observe that sn is a polynomial and hence is continuous at c. Hence we can find
some δ such that |sn(x)− sn(c)| < ε/3 for x ∈ (−a, a), |x− c| < δ. It follows that

|s(x)− s(c)| < ε,

that is, s is continuous at c.


