MATH2050C Assignment 12

Section 5.6 no. 3, 4, 11.
Deadline: April 15, 2025.

Hand in: 5.6 no. 3, 4, 11.

Supplementary Problems

1. (Optional) Order the rational numbers in (0, 1) into a sequence {zj}. Define a function
on (0,1) by o(z) = > 1/2F where the summation is over all indices k such that x;, < x.
Show that

(a) ¢ is strictly increasing and lim,_,;- ¢(x) = 1.
(b) ¢ is discontinuous at each zy.

(c) ¢ is continuous at each irrational number in (0, 1).

See next page
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The Exponential Function

We study the exponential function, and its inverse function namely the logarithmic function.
Then we use it to define the power functions.

Define

n—o0

E(z) = lim (1+%)".

Previously we have established the following facts:

e The limit E(z) = lim,, 00 (1 + 2/n)" exists for all z € R.
e For z > 0, the sequence {(1 + x/n)"} is increasing.

e For x € R, E(z)E(—x) = 1.

e For x> 0,E(z) = > 50, xF /Kl

Now we establish more.

Theorem 12.1 For z € R,

Proof Let x € [—a,a], we first claim there are ky and M depending only on a so that

ol _ k> k
TS ok o+ 1 (1)
For, fixing ko so that a/(ko + 1) < 1/2, we have
’x‘k - ak
kT K
_ aa a_a @
12 koko+1 K
_aa a1
12 ko 2k—ko
M (2a)ko
2k’ ko!

For k > kg + 1 and large n, we have
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after using (1). Noting that

7= (=030

Letting n — oo, we have

Given £ > 0, choose K such that M/2K < e. For k > K, |E(x) — Z;?:Oxj/jﬂ < M/2F <
M /2K < &. The conclusion follows.

Theorem 12.2 For z,y € R, E(x +y) = E(z)E(y) .
Proof Assume xz,y > 0 first. (If one of x,y is zero, the identity holds obviously.)

x T+ T

(1+5)(1+Y) = <1+ y+§>
n n n n
r+y xy

<1+ n +n?) z+y
= T ><<1+ )

x

n

Usinglgll%‘;;bgl—l—bfora,bzo, we have

<1+ Ly +$y)
1< n;c+yn2 <|(1+33)]" <Bayr.
<1+ - )

In the last step we have used the fact that (1 +zy/n)" increases to E(xy), hence (14 zy/n)" <
E(zy) and (1 + zy/n?)"* < E(zy)Y/". Using a'/™ — 1 as n — oo for any a > 0, we conclude by

the Squeeze Theorem that
x + x
<1 TR g)
. n n
lim

n—00 <1+aj—{—y>
n

Therefore, by passing limit in

n n < T2 n
<1+§) <1+£) = "H o ><<1+x:;y> ,
()

n

we conclude E(x)E(y) = E(z +y) for z,y > 0. The remaining cases are (a) x > 0,y < 0 and
x+y>0,(b)x>0,y<0,2+y <0, and (b) z,y <0. For (a), E(—y)E(x +y) = E(x) holds.
Using E(—y)E(y) = 1, E~Y(y)E(z +y) = E(x) which is E(z + y) = E(z)E(y). Cases (b) and
(c) can be deduced in a similar way.

T4y wy)

Theorem 12.3 E(z) is strictly increasing and lim,, . F(z) = co and lim,,_,_ E(z) = 0.
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Proof For z > 0, from Theorem 12.1, E(z) > 142 > 1. Fory >2 >0, E(y) = E(z+y—x) =
E(z)E(y — z) > E(x) since E(y — x) > 1. Hence E is strictly increasing on [0,00). Using
the relation E(x) = 1/E(—x), E is also strictly increasing on (—o0,0). We conclude that E is
strictly increasing on R. Finally, from E(x) > 1 + x, we see that E(x) diverges as x — co. On
the other hand, using E(z) = (E(—z))"!, E(z) decays to 0 as x — —oc.

Theorem 12.4 E(z) is continuous everywhere.

Proof First we claim that E is continuous at z = 0. For = € [-1,1],
2 3
r oz x

Therefore, lim, o E(x) =

1 = E(0). Hence E is continuous at x = 0. At an arbitrary c,
E(c+h)— E(c) = E(c)(E(h) — 1)

— 0 as h — 0, so E is continuous at c.

Here we present a more general result which shows not only the exponential functions, but also
the sine and cosine functions are continuous everywhere.

Theorem 12.5 Consider the infinite series
S(l‘) = Z akg )
k=0

where a € {—1,0,1} for all k. Then s is continuous on (—oo,00). In particular, E(x) is
continuous everywhere.

Proof First we establish convergence. For x € [—a,a], we use the estimate (1) in the proof
of Theorem 12.1: |z|*/k! < M/2* for k > ko + 1. Therefore, for the partial sums s, and
Sy, N 2> k0+17m2n7

sm(@) —sa(@)| = Y -

IA
=

(]

2=

A
]
7=
(e
[\]
x

which shows that s, (z) is a Cauchy sequence, hence s(z) converges.

To show that s is continuous, we let m — oo in the estimate above to get

s(x) — sp(z)] < 2%71 .
Let ¢ € (—a,a). Given € > 0, fix n such that M /2" < £/3. Then
|s(x) = s(c)| < [s(x) = sn(@)] + [sn(z) = sn(c)] + [sn(c) = s(c)] < &/3+ |sn(x) = sn(c)[ + /3.

We fix n and observe that s, is a polynomial and hence is continuous at ¢. Hence we can find
some ¢ such that |s,(z) — s,(c)| < /3 for x € (—a,a),|xr — c| < 0. It follows that

|s(x) = s(c)| <e,

that is, s is continuous at c.



