Section 5.6 no. 3, 4, 11.

Deadline: April 15, 2025.

Hand in: 5.6 no. 3, 4, 11.

Supplementary Problems

- 1. (Optional) Order the rational numbers in (0, 1) into a sequence $\{x_k\}$. Define a function on (0, 1) by $\varphi(x) = \sum 1/2^k$ where the summation is over all indices k such that $x_k < x$. Show that
 - (a) φ is strictly increasing and $\lim_{x\to 1^-} \varphi(x) = 1$.
 - (b) φ is discontinuous at each x_k .
 - (c) φ is continuous at each irrational number in (0, 1).

See next page

The Exponential Function

We study the exponential function, and its inverse function namely the logarithmic function. Then we use it to define the power functions.

Define

$$E(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Previously we have established the following facts:

- The limit $E(x) \equiv \lim_{n \to \infty} (1 + x/n)^n$ exists for all $x \in \mathbb{R}$.
- For $x \ge 0$, the sequence $\{(1 + x/n)^n\}$ is increasing.
- For $x \in \mathbb{R}$, E(x)E(-x) = 1.
- For $x \ge 0, E(x) = \sum_{k=0}^{\infty} x^k / k!$.

Now we establish more.

Theorem 12.1 For $x \in \mathbb{R}$,

$$E(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \; .$$

Proof Let $x \in [-a, a]$, we first claim there are k_0 and M depending only on a so that

$$\frac{|x|^k}{k!} \le \frac{M}{2^k}, \quad k \ge k_0 + 1.$$
(1)

For, fixing k_0 so that $a/(k_0+1) \leq 1/2$, we have

$$\begin{aligned} \frac{x|^{k}}{k!} &\leq \frac{a^{k}}{k!} \\ &= \frac{a}{1}\frac{a}{2}\cdots\frac{a}{k_{0}}\frac{a}{k_{0}+1}\cdots\frac{a}{k} \\ &< \frac{a}{1}\frac{a}{2}\cdots\frac{a}{k_{0}}\frac{1}{2^{k-k_{0}}} \\ &= \frac{M}{2^{k}}, \quad M = \frac{(2a)^{k_{0}}}{k_{0}!}. \end{aligned}$$

For $k \ge k_0 + 1$ and large n, we have

$$\begin{split} \left| \left(1 + \frac{x}{n} \right)^n - \sum_{j=0}^k C_j^n \frac{x^j}{n^j} \right| &= \left| \sum_{\substack{j=k+1 \\ j=k+1}}^n C_j^n \frac{x^j}{n^j} \right| \\ &\leq \sum_{\substack{j=k+1 \\ j=k+1}}^n \frac{|x|^j}{j!} \\ &\leq \sum_{\substack{j=k+1 \\ j=k+1}}^n \frac{M}{2^j} \\ &\leq \frac{M}{2^{k+1}} \sum_{\substack{j=0 \\ j=k+1}}^\infty \frac{1}{2^j} \\ &= \frac{M}{2^k} \end{split}$$

after using (1). Noting that

$$C_j^n \frac{x^j}{n^j} = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{j-1}{n}\right) \frac{x^j}{j!}.$$

Letting $n \to \infty$, we have

$$\left| E(x) - \sum_{j=0}^{k} \frac{x^j}{j!} \right| \le \frac{M}{2^k}$$

Given $\varepsilon > 0$, choose K such that $M/2^K < \varepsilon$. For $k \ge K$, $|E(x) - \sum_{j=0}^k x^j/j!| \le M/2^k \le M/2^K < \varepsilon$. The conclusion follows.

Theorem 12.2 For $x, y \in \mathbb{R}$, E(x+y) = E(x)E(y).

Proof Assume x, y > 0 first. (If one of x, y is zero, the identity holds obviously.)

$$\begin{pmatrix} 1+\frac{x}{n} \end{pmatrix} \begin{pmatrix} 1+\frac{y}{n} \end{pmatrix} = \begin{pmatrix} 1+\frac{x+y}{n} + \frac{xy}{n^2} \end{pmatrix}$$
$$= \frac{\begin{pmatrix} 1+\frac{x+y}{n} + \frac{xy}{n^2} \end{pmatrix}}{\begin{pmatrix} 1+\frac{x+y}{n} \end{pmatrix}} \times \left(1+\frac{x+y}{n}\right) .$$

Using $1 \leq \frac{1+a+b}{1+a} \leq 1+b$ for $a, b \geq 0$, we have

$$1 \le \left[\frac{\left(1 + \frac{x+y}{n} + \frac{xy}{n^2}\right)}{\left(1 + \frac{x+y}{n}\right)}\right]^n \le \left[\left(1 + \frac{xy}{n^2}\right)\right]^n \le E(xy)^{1/n}$$

In the last step we have used the fact that $(1 + xy/n)^n$ increases to E(xy), hence $(1 + xy/n)^n \leq E(xy)$ and $(1 + xy/n^2)^n \leq E(xy)^{1/n}$. Using $a^{1/n} \to 1$ as $n \to \infty$ for any a > 0, we conclude by the Squeeze Theorem that

$$\lim_{n \to \infty} \left[\frac{\left(1 + \frac{x+y}{n} + \frac{xy}{n^2} \right)}{\left(1 + \frac{x+y}{n} \right)} \right]^n = 1$$

Therefore, by passing limit in

$$\left(1+\frac{x}{n}\right)^n \left(1+\frac{y}{n}\right)^n = \left[\frac{\left(1+\frac{x+y}{n}+\frac{xy}{n^2}\right)}{\left(1+\frac{x+y}{n}\right)}\right]^n \times \left(1+\frac{x+y}{n}\right)^n ,$$

we conclude E(x)E(y) = E(x+y) for $x, y \ge 0$. The remaining cases are (a) x > 0, y < 0 and x+y > 0, (b) x > 0, y < 0, x+y < 0, and (b) x, y < 0. For (a), E(-y)E(x+y) = E(x) holds. Using E(-y)E(y) = 1, $E^{-1}(y)E(x+y) = E(x)$ which is E(x+y) = E(x)E(y). Cases (b) and (c) can be deduced in a similar way.

Theorem 12.3 E(x) is strictly increasing and $\lim_{n\to\infty} E(x) = \infty$ and $\lim_{n\to\infty} E(x) = 0$.

Proof For x > 0, from Theorem 12.1, E(x) > 1 + x > 1. For y > x > 0, E(y) = E(x+y-x) = E(x)E(y-x) > E(x) since E(y-x) > 1. Hence E is strictly increasing on $[0,\infty)$. Using the relation E(x) = 1/E(-x), E is also strictly increasing on $(-\infty, 0)$. We conclude that E is strictly increasing on \mathbb{R} . Finally, from $E(x) \ge 1 + x$, we see that E(x) diverges as $x \to \infty$. On the other hand, using $E(x) = (E(-x))^{-1}$, E(x) decays to 0 as $x \to -\infty$.

Theorem 12.4 E(x) is continuous everywhere.

Proof First we claim that E is continuous at x = 0. For $x \in [-1, 1]$,

$$|E(x) - 1| = \left| x \left(1 + \frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \cdots \right) \right| \le E(1)|x|.$$

Therefore, $\lim_{x\to 0} E(x) = 1 = E(0)$. Hence E is continuous at x = 0. At an arbitrary c, $E(c+h) - E(c) = E(c)(E(h) - 1) \to 0$ as $h \to 0$, so E is continuous at c.

Here we present a more general result which shows not only the exponential functions, but also the sine and cosine functions are continuous everywhere.

Theorem 12.5 Consider the infinite series

$$s(x) = \sum_{k=0}^{\infty} a_k \frac{x^k}{k!} \; ,$$

where $a_k \in \{-1, 0, 1\}$ for all k. Then s is continuous on $(-\infty, \infty)$. In particular, E(x) is continuous everywhere.

Proof First we establish convergence. For $x \in [-a, a]$, we use the estimate (1) in the proof of Theorem 12.1: $|x|^k/k! \leq M/2^k$ for $k \geq k_0 + 1$. Therefore, for the partial sums s_n and $s_m, m, n \geq k_0 + 1, m \geq n$,

$$\begin{aligned} |s_m(x) - s_n(x)| &= \sum_{k=n+1}^m \frac{|x|^k}{k!} \\ &\leq M \sum_{k=n_1}^m \frac{1}{2^k} \\ &\leq \frac{M}{2^{n+1}} \sum_{k=0}^\infty 2^{-k} \\ &= \frac{M}{2^n} , \end{aligned}$$

which shows that $s_n(x)$ is a Cauchy sequence, hence s(x) converges.

To show that s is continuous, we let $m \to \infty$ in the estimate above to get

$$\left|s(x) - s_n(x)\right| \le \frac{M}{2^n}$$

Let $c \in (-a, a)$. Given $\varepsilon > 0$, fix n such that $M/2^n < \varepsilon/3$. Then

$$|s(x) - s(c)| \le |s(x) - s_n(x)| + |s_n(x) - s_n(c)| + |s_n(c) - s(c)| \le \varepsilon/3 + |s_n(x) - s_n(c)| + \varepsilon/3.$$

We fix n and observe that s_n is a polynomial and hence is continuous at c. Hence we can find some δ such that $|s_n(x) - s_n(c)| < \varepsilon/3$ for $x \in (-a, a), |x - c| < \delta$. It follows that

$$|s(x) - s(c)| < \varepsilon,$$

that is, s is continuous at c.